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Port Analysis
In this section...
“Input Impedance” on page 1-3
“Resonance” on page 1-5
“Reflection Coefficient” on page 1-6
“Return Loss” on page 1-7
“Voltage Standing Wave Ratio” on page 1-9
“Bandwidth” on page 1-10

 The port of an antenna is the physical location where the RF source is connected. From a
network theory perspective, the antenna has a single port. In Antenna Toolbox, a red dot
on the antenna figure represents the feed point. A half-wavelength dipole is shown with
its feed point:
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All antennas are excited by a voltage of 1V at the port. The various terminal port
parameters are as follows:

Input Impedance
Input impedance is the ratio of voltage to current at the port. Antenna impedance is
calculated as the ratio of the phasor voltage, which is 1V at a phase angle of 0 deg, to
the phasor current at the port. The impedance equation is:

Z = V /I = R + jX

where:
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• V is the antenna excitation voltage
• I is the current
• R is the antenna resistance in ohms
• X is the antenna reactance in ohms

Antenna input impedance is a frequency-dependent quantity. The plot shows the input
impedance of a dipole antenna over the frequency band 20–120 MHz. The resistance and
reactance traces vary with frequency. The variation can be qualitatively described in
terms of resonances.

d = dipole;
impedance(d,20e6:1e6:120e6)
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Use impedance to calculate the input impedance of any antennas in Antenna Toolbox.

Resonance
The resonant frequency of the antenna is the frequency at which the reactance of the
antenna is equal to zero.

The plot shows two resonance points of a dipole antenna.

In the plot, the reactance values are negative, or capacitive, before the resonance. These
values are positive or inductive after the resonance. This type of resonance is called
series resonance. You can model this type of resonance using a series RLC circuit. If the
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impedance curve goes from positive reactance to negative reactance, it is called parallel
resonance. You can model this type of resonance using a parallel RLC circuit.

Reflection Coefficient
The reflection coefficient, or S_1_1, of the antenna describes a relative fraction of the
incident RF power that is reflected back due to the impedance mismatch. Impedance
mismatch is the difference between the input impedance of the antenna and the
characteristic impedance of the transmission line (or the generator impedance when the
transmission line is not present). The characteristic impedance is the reference
impedance.

S = sparameters(d,20e6:1e6:120e6,72)
rfplot(S)
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The reflection coefficient also gives the operating bandwidth of the antenna. Antenna
bandwidth is usually the frequency band over which the magnitude of the reflection
coefficient is below –10 dB.

Use sparameters to calculate the value of S11 for any antenna in the Antenna Toolbox.

Return Loss
The return loss of an antenna is a measure of the effectiveness of power delivery from a
transmission line or coaxial cable to a load such as an antenna. The return loss can also
be defined as the difference in dB between the power sent toward the antenna and the
power reflected back from it. The higher the power ratio, the better matching between
load and line. Return loss equation is:
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RL = − 20log10 S11

where:

• RL is the return loss
• S11 is the reflection coefficient, or power reflected from the antenna.

For passive devices, the return loss is a positive nondissipative term representing the
reduction in amplitude of the reflected wave in comparison to the incident wave. In active
devices, a negative return loss is possible.

d = dipole;
returnLoss(d,20e6:1e6:120e6,72)
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Return loss plots also give the operating bandwidth of the antenna. Antenna bandwidth is
the frequency band over which the magnitude of return loss is greater than 10 dB. Use
the returnLoss function to calculate the return loss of any antenna in the Antenna
Toolbox library.

Voltage Standing Wave Ratio
The voltage standing wave ratio (VSWR) of an antenna is another measure of impedance
matching between transmission line and antenna. The standing wave is generated
because of the impedance mismatch at the port. VSWR equation is:

VSWR =
1 + S11
1− S11

where:

• S11 is the reflection coefficient.

d = dipole;
vswr(d,20e6:1e6:120e6,72)
axis([20 120 1 20])
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VSWR is scalar and contains no phase information. The value of VSWR lies between 1 and
infinity. Antenna bandwidth is usually the frequency band over which the VSWR is less
than approximately 2.

Use vswr to calculate the voltage standing wave ratio for any antenna in Antenna
Toolbox.

Bandwidth
Bandwidth describes the range of frequencies over which the antenna can properly
radiate or receive energy. It is a fundamental antenna parameter. Often, the desired
bandwidth is one of the parameters used to determine which antenna to use. Antenna
bandwidth is usually the frequency band over which the magnitude of the reflection
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coefficient is below -10 dB, or the magnitude of the return loss is greater than 10 dB, or
the VSWR is less than approximately 2. All these criteria are equivalent. You can control
the bandwidth using proper antenna design.

References
[1] Balanis, C.A. Antenna Theory: Analysis and Design.3rd Ed. New York: Wiley, 2005.

[2] Stutzman, Warren L., and Thiele, Gary A. Antenna Theory and Design. 3rd Ed. New
York: Wiley, 2013.

[3] Bird, T.S. “Definition and Misuse of Return Loss.” IEEE Antennas and Propagation
Magazine. Vol. 51, Issue 2, April 2009, pp. 166–167.
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Surface Analysis
In this section...
“Charge Distribution” on page 1-12
“Current Distribution” on page 1-16

Charge Distribution
The flow of charges on the antenna surface determines the surface currents of the
antenna. For antennas to radiate, there must be acceleration or deceleration of charges.
The deceleration of charges is caused due to buildup of charges at the end of the wire,
which leads to impedance discontinuities. This mechanism creates electromagnetic
radiation. The accumulation of charges varies according to time and structure of the
antenna.

The accumulation of charges is exploited in many ways. If you calculate the impedance of
this monopole antenna using the impedance function, you get the following plot:

m = monopole
impedance(m,20e6:1e6:120e6)
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You can observe the first resonance is at approximately 71 MHz. To lower the resonance
frequency, recalculate the height of the monopole to quarter wavelength. The frequency
of operation is also lower. You must also have to increase the size of the corresponding
ground plane. This increase in size means that to achieve similar performance at a lower
frequency, you need a larger antenna. This approach is not possible due to physical space
constraints.

Alternatively, you can exploit the fact that antennas have charge accumulation. If you
provide appropriate structural modification to the antenna, charges accumulate. For a
monopole antenna, you can enable charge accumulation by adding a top-hat to the
monopole. Now, if you calculate the impedance of the antenna using the top-hat, the plot
is:
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mt = monopoleTopHat
impedance(mt,20e6:1e6:120e6)

All the dimensions of this antenna are same as the monopole. The first resonance of the
antenna is approximately 45 MHz. To view the accumulated charges on the top-hat
monopole, use the charge function:
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The increase in capacitance lowers the frequency of the antenna. By keeping the physical
volume of the antenna same, the resonance point is shifted.

Increasing the top-hat dimensions provides more surface area for charges to accumulate.
More charge accumulation increases the capacitance and pushes the resonant frequency
lower. For example:

mt.TopHatLength = 0.35
mt.TopHatWidth = 0.35
impedance(mt,20e6:1e6:120e6)
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The resonance of the antenna further reduces to approximately 40 MHz.

Current Distribution
A typical antenna surface has current flowing on it. The behavior of the antenna surface
current depends on the frequency of the input source, the geometry of the antenna, and
the material properties of the antenna. The current is a vector and is spatially related to
the structure of the antenna. In a dipole antenna, the maximum current distribution in the
middle of the antenna and the minimum is toward the end:

d = dipole;
current(d,70e6)
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The same is true for a spiral antenna:

s = spiralEquiangular;
current(s,4e9)
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The patch also shows the current distribution of the classic λ/2 open-open resistor. The
two ends of the patch represent an open circuit since the current is at a minimum.

pm = patchMicrostrip;
current(pm,1.75e9)
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The spatial relationship between the current and structure of antenna is termed mode.

References
[1] Balanis, C.A. Antenna Theory. Analysis and Design, 3rd Ed. New York: Wiley, 2005.

[2] Makarov, S.N. Antenna and EM Modeling with MATLAB, New York: Wiley & Sons,
2002, p. 66.
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Meshing
In this section...
“Automatic Meshing Mode” on page 1-20
“Manual Meshing Mode” on page 1-22
“Strip Meshing” on page 1-23
“Surface Meshing” on page 1-24
“Meshing a Dielectric Substrate” on page 1-25

Method of Moments (MoM) is a numerical method that transforms Maxwell’s continuous
integral equations into an approximate discrete formulation that requires inversion of a
large matrix. Meshing is the process of converting the continuous domain into the
discrete domain for solving the equations. For discretizing surfaces, typically either
triangles or rectangles are used. Antenna Toolbox uses triangular element for meshing as
it conforms better for arbitrary shaped surfaces. The triangles are used to approximate
the surface current using the Rao-Wilton-Glisson (RWG) basis functions. To get an
accurate result, ensure that large number of triangles are present in the region where
current variation is the highest. This region is typically either the corners in the antenna
geometry or at the point where the antenna is excited.

Automatic Meshing Mode
In Antenna Toolbox, the antenna structures mesh automatically based on the analysis
frequency chosen. For analysis functions that accept a scalar frequency, the antennas
mesh at that single frequency to satisfy the minimum triangles required. Then the
functions calculate the corresponding antenna parameter.

d = dipole;
impedance(d,75e6);
mesh(d)

1 Antenna Concepts

1-20



In above example, the dipole is meshed at 75 MHz automatically before calculating the
impedance at that value. Use the mesh command to view the meshed dipole. The number
of triangles is 44.

For analysis functions that accept a frequency vector (impedance, sparameters,
returnLoss, vswr), each antenna meshes once at the highest frequency. Then, the
functions calculate the corresponding antenna parameters at all the frequencies in the
range.

d = dipole;
impedance(d,75e6:1e6;85e6);
mesh(d)
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In above example, the dipole is meshed at the highest frequency, 85 MHz automatically
before calculating the impedance at all the frequencies from 75 to 85 MHz. Meshing at
the highest frequency, 85 MHz, ensures maximum number of triangles and a smoother
plot of the dipole impedance. Use the mesh command to view the meshed dipole. The
number of triangles is 48, which is more than single frequency meshing.

Manual Meshing Mode
You can choose to mesh the structure manually at the highest frequency of interest.
Manual meshing is done by specifying the maximum edge length that is used for
discretizing the structure. One option is to specify the value to be one-tenth of the
wavelength at the highest frequency of interest. For example:

sp     = spiralArchimedean;
freq   = 0.8e9:100e6:2.5e9;
lambda = 3e8/freq(end);
mesh (sp,'MaxEdgeLength',lambda/10);

Alternatively, you can run an analysis at the highest frequency of interest and get the
maximum edge length. Specify this maximum edge length using the mesh function as
shown. This mesh is used for all other calculations.

sp     = spiralArchimedean;
freq   = 0.8e9:100e6:2.5e9;
temp   = axialRatio(sp,freq(end), 0, 90);
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meshdata = mesh(sp);
mesh(sp,'MaxEdgeLength',meshdata.MaxEdgeLength);

Strip Meshing
For strip meshing, include at least 10 triangles per wavelength in a strip. This rule applies
for structures such as dipoles, monopoles, and loops. Antenna Toolbox antenna meets the
requirement automatically, based on the analysis frequency specified. The structured
mesh generated in such cases is shown:
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Surface Meshing
For surface meshing, it is recommended that there be at least 100 elements per
wavelength in a particular area. This rule applies to structures such as spirals, patches,
and ground planes in general. Antenna Toolbox antenna meets the requirement
automatically, based on the analysis frequency specified. In these cases, a non-uniform
mesh is generated as shown:

Larger number of triangles are added in regions with higher current density.
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Meshing a Dielectric Substrate
For antennas using dielectrics and metals, Antenna Toolbox uses tetrahedrons to
discretize the volume of the dielectric substrate.

Thickness of the dielectric substrate is measured with respect to the wavelength. A
dielectric substrate with thickness less than or equal to 1/50th of the wavelength is a thin
substrate. When you mesh an antenna using dielectric in auto mode, thin substrates yield
more accurate solutions.

A substrate with a thickness of 1/10th of the wavelength is a thick dielectric substrate.
The method of moments solver requires 10 elements per wavelength to yield an accurate
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solution. Manual meshing yields more accurate solutions for antennas using thick
dielectric substrate, as it satisfies the 10 elements per wavelength criteria.

References
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Field Analysis
In this section...
“Radiation Pattern” on page 1-27
“Beamwidth” on page 1-32
“E-Plane and H Plane” on page 1-33
“Polarization” on page 1-35
“Axial Ratio” on page 1-39

Radiation Pattern
The radiation pattern of an antenna is the spatial distribution of power. The pattern
displays the directivity or gain of the antenna. the power pattern of an antenna plots the
transmitted or received power for a given radius. The field pattern of an antenna plots the
variation in the electric or magnetic field for a given radius. The radiation pattern
provides details such as the maximum and minimum value of the field quantity and the
range of angles over which data is plotted.

h = helix;
h.Turns = 13;
h.Radius = 0.025;
pattern(h,2.1e9)
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Use the pattern function to plot radiation pattern of any antenna in the Antenna
Toolbox. By default, the function plots the directivity of the antenna. You can also plot the
electric field and power pattern by using Type name-value pair argument of the pattern
function.

Lobes

Each radiation pattern of an antenna contains radiation lobes. The lobes are divided into
major lobes (also called main lobes) and minor lobes. Side lobes and back lobes are
variations of minor lobes.

h = helix;
h.Turns = 13;
h.Radius = 0.025;
patternElevation(h,2.1e9)
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• Major or Main lobe: Shows the direction of maximum radiation, or power, of the
antenna.

• Minor lobe: Shows the radiation in undesired directions of antenna. The fewer the
number of minor lobes, the greater the efficiency of the antenna. Side lobes are minor
lobes that lie next to the major lobe. Back lobes are minor lobes that lie opposite to the
major lobe of antenna.

• Null: Shows the direction of zero radiation intensity of the antenna. Nulls usually lie
between the major and minor lobe or in between the minor lobes of the antennas.
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Field Regions

For an antenna engineer and an electromagnetic compatibility (EMC) engineer, it is
important to understand the regions around the antenna.

The region around an antenna is defined in many ways. The most used description is a 2-
or 3-region model. The 2-region model uses the terms near field and the far field to
identify specific dominant field mechanisms. The diagram is a representation of antenna
fields and boundaries. The 3-field region splits the near field into a transition zone, where
a weakly radiative mechanism is at work.

Near-Field Region: The near-field region is divided into two transition zones: a
reactive zone and radiating zone.
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• Reactive Near-Field Region: This region is closest to the antenna surface. The
reactive field dominates this region. The reactive field is stored energy, or standing
waves. The fields in this region change rapidly with distance from the antenna. The
equation for outer boundary of this region is: R < 0.62 D3/λ where R is the distance
from the antenna, λ is the wavelength, and D is the largest dimension of the antenna.
This equation holds true for most antennas. In a very short dipole, the outer boundary
of this region is λ/2π from the antenna surface.

• Radiating Near-Field Region: This region is also called the Fresnel region and
lies between the reactive near-field region and the far-field region. The existence of
this region depends on the largest dimension of the antenna and the wavelength of
operation. The radiating fields are dominant in this region. The equation for the inner
boundary of the region is equation R ≥ 0.62 D3/λ and the outer boundary is
R < 2D2/λ. This holds true for most antennas. The field distribution depends on the
distance from the antenna.

Far-field Region: This region is also called Fraunhofer region. In this region, the field
distribution does not depend on the distance from the antenna. The electric and magnetic
fields in this region are orthogonal to each other. This region contains propagating waves.
The equation for the inner boundary of the far-field is R = 2D2/λ and the equation for the
outer boundary is infinity.

Directivity and Gain

Directivity is the ability of an antenna to radiate power in a particular direction. It can be
defined as ratio of maximum radiation intensity in the desired direction to the average
radiation intensity in all other directions. The equation for directivity is:

D = 4πU(θ, ϕ)
Prad

where:

• D is the directivity of the antenna
• U is the radiation intensity of the antenna
• Prad is the average radiated power of antenna in all other directions

Antenna directivity is dimensionless and is calculated in decibels compared to the
isotropic radiator (dBi).
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The gain of an antenna depends on the directivity and efficiency of the antenna. It can be
defined as the ratio of maximum radiation intensity in the desired direction to the total
power input of the antenna. The equation for gain of an antenna is:

G = 4πU(θ, ϕ)
Pin

where:

• G is the gain of the antenna
• U is the radiation intensity of the antenna
• Pin is the total power input to the antenna

If the efficiency of the antenna in the desired direction is 100%, then the total power input
to the antenna is equal to the total power radiated by the antenna, that is, Pin = Prad. In
this case, the antenna directivity is equal to the antenna gain.

Beamwidth
Antenna beamwidth is the angular measure of the antenna pattern coverage. As seen in
the figure, the main beam is a region around maximum radiation. This beam is also called
the major lobe, or main lobe of the antenna.
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Half power beamwidth (HPBW) is the angular separation in which the magnitude of the
radiation pattern decreases by 50% (or -3dB) from the peak of the main beam

Use the beamwidth function to calculate the beamwidth of any antenna in Antenna
Toolbox.

E-Plane and H Plane
E-plane: Plane containing the electric field vector and the direction of maximum
radiation. Consider a dipole antenna that is vertical along the z-axis. Use the
patternElevation function to plot the elevation plane pattern. The elevation plane
pattern shown captures the E-plane behavior of the dipole antenna.
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d = dipole;
patternElevation(d,70e6)

H-plane: Plane containing the magnetic field vector and the direction of maximum
radiation. Use the patternAzimuth function to plot the azimuth plane pattern of a
dipole antenna. The azimuthal variation in pattern shown captures the H-plane behavior
of the dipole antenna.

d = dipole;
patternAzimuth(d,70e6)
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Use EHfields to measure the electric and magnetic fields of the antenna. The function
can be used to calculate both near and far fields.

Polarization
Polarization is the orientation of the electric field, or E-field, of an antenna. Polarization
is classified as elliptical, linear, or circular.

Elliptical polarization: If the electric field remains constant along the length but
traces an ellipse as it moves forward, the field is elliptically polarized. Linear and circular
polarizations are special cases of elliptical polarization.
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Linear polarization: If the electric field vector at a point in space is directed along a
straight line, the field is linearly polarized. A linearly polarized antenna radiates only one
plane and this plane contains the direction of propagation of the radio waves. There are
two types of linear polarization:

• Horizontal Polarization: The electric field vector is parallel to the ground plane.
To view the horizontal polarization pattern of an antenna, use the pattern function,
with the 'Polarization' name-value pair argument set to 'H'. The plot shows the
horizontal polarization pattern of a dipole antenna:

d = dipole;
pattern(d,70e6,'Polarization','H')

USA television networks use horizontally polarized antennas for broadcasting.
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• Vertical Polarization: The electric field vector is perpendicular to the ground
plane. To view the vertical polarization pattern of an antenna, use the pattern
function, with the 'Polarization' name-value pair argument set to 'V'. Vertical
polarization is used when a signal has to be radiated in all directions. The plot shows
the vertical polarization pattern of a dipole antenna:

d = dipole;
pattern(d,70e6,'Polarization','V')

An AM radio broadcast antenna or an automobile whip antenna are some examples of
vertically polarized antennas.

Circular Polarization: If the electric field remains constant along the straight line
but traces circle as it moves forward, the field is circularly polarized. This wave radiates
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in both vertical and horizontal planes. Circular polarization is most often used in satellite
communications. There are two types of circular polarization:

• Right-Hand Circularly Polarized (RHCP): The electric field vector is traced in
the counterclockwise direction. To view the RHCP pattern of an antenna, use the
pattern function, with the 'Polarization' name-value pair argument set to 'RHCP'. The
plot shows RHCP pattern of helix antenna:

 h = helix;
 h.Turns = 13;
 h.Radius = 0.025;
 pattern(h,1.8e9,'Polarization','RHCP')

• Left-Hand circularly polarized (LHCP): The electric field vector is traced in
the clockwise direction. To view the LHCP pattern of an antenna, use the pattern
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function, with the 'Polarization' name-value pair argument set to 'LHCP'. The plot
shows LHCP pattern of helix antenna:

 h = helix;
 h.Turns = 13;
 h.Radius = 0.025;
 pattern(h,1.8e9,'Polarization','LHCP')

For efficient communications, the antennas at the transmitting and receiving end must
have same polarization.

Axial Ratio
Axial ratio (AR) of an antenna in a given direction quantifies the ratio of orthogonal field
components radiated in a circularly polarized wave. An axial ratio of infinity implies a
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linearly polarized wave. When the axial ratio is 1, the radiated wave has pure circular
polarization. Values greater than 1 imply elliptically polarized waves.

Use axialRatio to calculate the axial ratio for any antenna in the Antenna Toolbox.
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Rotate Antennas and Arrays
In this section...
“Rotate Single Antenna Element” on page 1-41
“Rotate Single Antenna Element About Multiple Axes” on page 1-44
“Rotate Dipole-Backed Reflector” on page 1-45
“Rotate Antenna Array” on page 1-48

To rotate antenna elements in Antenna Toolbox, use the Tilt and TiltAxis properties.
The Tilt property specifies the angles of rotation of the antenna in degrees. The
TiltAxis property specifies the one or more axes of rotation (X, Y, Z) of the antenna.

Rotate Single Antenna Element
Create a patch antenna. By default, this antenna is on the X-Y plane.

patch = patchMicrostrip;
show(patch)
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To make the antenna lie on the Y-Z plane, rotate it by 90 degrees about the Y-axis. The
rotation follows the standard right-hand rule.

patch.TiltAxis ='Y'; 
patch.Tilt = 90;
show(patch)
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The patch lies behind the ground plane and is not visible. To make the patch visible
change the TiltAxis property to [0 -1 0]. The Tilt property is still 90, but the axis
of rotation is now the Y-axis. The negative number in the TiltAxis vector determines the
direction of rotation about the Y-axis as per the right-hand rule.

patch.TiltAxis = [0 -1 0];
show(patch)
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Rotate Single Antenna Element About Multiple Axes
Create a dipole antenna. Change the direction of rotation of the antenna with two
rotations simultaneously. Rotate the antenna by 90 degrees about the axis specified by [0
1 0] and rotate it by 90 degree about the axis specified by [0 1 1].

d = dipole('Tilt',[90 90],'TiltAxis', [0 1 0; 0 1 1])

dipole with properties:

        Length: 2
         Width: 0.1000
    FeedOffset: 0
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          Tilt: [90 90]
      TiltAxis: [2x3 double]

show(d)

Rotate Dipole-Backed Reflector
The Tilt and TiltAxis properties are available for dipole and reflector elements. Use
these properties if you want to model an antenna parallel or perpendicular to the ground
plane.

Create a reflector element. By default, the dipole is parallel to the reflector element.

r = reflector;
show(r)
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The dipole is the exciter element of the reflector. View its properties.

r.Exciter;

 dipole with properties:

        Length: 0.1500
         Width: 0.0050
    FeedOffset: 0
          Tilt: 90
      TiltAxis: [0 1 0]

Based on the Tilt and TiltAxis properties the dipole element is rotated by 90 degrees
about the y-axis and is parallel to the X-Y plane. To make the dipole perpendicular to the
X-Y plane, change the Tilt property of the dipole to 0 degrees.

r.Exciter.Tilt = 0;
show(r)
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Rotating the reflector element rotates the entire structure by the specified angle. To
rotate the complete antenna, use the Tilt property of the reflector object. For example,
rotate the reflector by 90 degrees about the Y-axis. According to the right-hand rule, the
reflector now lies in the Y-Z plane with the dipole.

r = reflector;
r.Tilt = 90;
show(r)
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Rotate Antenna Array
Create an array of Archimedean spirals with the whole array rotated at 30 degrees about
the X-axis and Y-axis. First create one spiral antenna.

s = spiralArchimedean;
l = linearArray('Element',s,'ElementSpacing',0.1,...
'NumElements',3,'Tilt',30,'TiltAxis',[1 1 0]);
show(l)
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See Also

More About
• “Antenna Classification”
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Infinite Ground Plane
In this section...
“Image Theory” on page 1-50
“Formulate the Image Theory Technique” on page 1-51

Antenna Toolbox library element uses the image theory technique to model an infinite
ground plane. The main advantage of image theory technique is that you do not need to
discretize the ground plane. Image theory reduces the overall size of the problem and you
get a solution faster.

Image Theory
The image theory technique uses a catalog of electromagnetic problems that produce
identical field distributions. You can identify these electromagnetic problems by noting
that conducting surfaces are of constant potential. Placing these conducting surfaces
along any equipotential lines in any field distributions does not alter the fields.

Consider a positive and negative charge placed a distance of 2x apart from each other.
The equipotential surface for these two charges forms at a distance midway between
them.
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If you place a conducting object along this equipotential surface, then the field above the
surface does not change.

You can also apply this equivalence in reverse. Consider charges that are distance x apart
from a conducting surface. You can replace the conducting surface with a set of image
charges whose signs are opposite those of the original charge. Place these image charges
at a distance x below the original conducting surface. This method eliminates the
conducting plate, leaving only charges in unbound space. This equivalence is called the
method of images.

Formulate the Image Theory Technique
Consider a rectangular plate over an infinite ground plane. This rectangular plate is
divided into a triangular mesh. The induced currents flow over the triangulated surface
using the RWG basis functions. 
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You formulate the problem by considering real and image basis functions. You can show
the same problem using image theory or method of images. The interaction matrix is
calculated using the interaction between real and image basis functions.

According to the method of images, the real and image electric currents are equal to each
other in terms of magnitude. The parallel components are in opposite direction. The
normal components are in the same direction. 
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See Also

More About
• “Method of Moments Solver for Metal Structures” on page 3-2
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Model Infinite Ground Plane for Balanced Antennas
This example shows how to model an infinite ground plane and calculate fundamental
antenna parameters for balanced antennas.

Create Antenna On Infinite Ground Plane

Create a reflector antenna on a ground plane of infinite length.

r = reflector ('GroundPlaneLength', inf)

r = 
  reflector with properties:

              Exciter: [1x1 dipole]
            Substrate: [1x1 dielectric]
    GroundPlaneLength: Inf
     GroundPlaneWidth: 0.2000
              Spacing: 0.0750
      EnableProbeFeed: 0
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

View Antenna Geometry

View the physical construction of infinite ground plane reflector antenna.

figure;show(r);
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Calculate Impedance of Antenna

Calculate the impedance of reflector antenna over a frequency range of 800MHz to 1GHz.

figure;impedance(r,800e6:5e6:1e9);
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Plot Radiation Pattern of Antenna

Plot the radiation pattern of reflector antenna at a frequency of 900MHz.

figure;pattern(r,900e6);
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Visualize Antenna Mesh

Mesh and view the infinite ground plane reflector antenna.

figure; mesh(r);
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Model Infinite Ground Plane for Unbalanced Antennas
This example shows how to model an infinite ground plane and calculate fundamental
antenna parameters for unbalanced antennas.

Create Antenna on Infinite Ground Plane

Create a patch microstrip antenna on a ground plane of infinite length.

p = patchMicrostrip('GroundPlaneLength', inf)

p = 
  patchMicrostrip with properties:

               Length: 0.0750
                Width: 0.0375
               Height: 0.0060
            Substrate: [1x1 dielectric]
    GroundPlaneLength: Inf
     GroundPlaneWidth: 0.0750
    PatchCenterOffset: [0 0]
           FeedOffset: [-0.0187 0]
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

View Antenna Geometry

View the physical construction of the patch microstrip antenna using infinite ground
plane.

figure;
show(p);
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Calculate Impedance of Antenna

Calculate the impedance of the antenna over a frequency range of 1.60 GHz to 1.70 GHz.

figure;
impedance(p,1.60e9:5e6:1.70e9);
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Plot Radiation Pattern of Antenna

Plot the radiation pattern of the antenna at a frequency of 1.67 GHz.

figure;
pattern(p,1.67e9);
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Visualize Antenna Mesh

Mesh and view the infinite ground plane patch microstrip antenna.

figure; 
mesh(p);
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Array Concepts

• “Mutual Coupling” on page 2-2
• “Beamforming” on page 2-15
• “Grating Lobes” on page 2-20
• “Correlation Coefficient” on page 2-23
• “Infinite Arrays” on page 2-25
• “Manipulate Array Elements” on page 2-41
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Mutual Coupling
In this section...
“Active or Scan Impedance” on page 2-2
“Mutual Impedance” on page 2-3
“Coupling Matrix” on page 2-4
“Array Factor and Pattern Multiplication” on page 2-6
“Isolated Element Pattern” on page 2-12
“Embedded Element Pattern” on page 2-13

Mutual coupling is the electromagnetic interaction between the antenna elements in an
array. The current developed in each antenna element of an array depends on their own
excitation and also on the contributions from adjacent antenna elements. Mutual coupling
is inversely proportional to the spacing between the different antenna elements in an
array. Mutual coupling in an array causes:

• Changes in the radiation pattern of the array
• Changes in the input impedance of the individual antenna elements in an array

To characterize mutual coupling, you can use mutual impedance, S-parameters, a
coupling matrix, or an embedded element pattern.

Active or Scan Impedance
Active impedance, or scan impedance, is the input impedance of each antenna element in
an array, when all elements are excited.
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The active impedance of an array depends on:

• Array configuration
• Spacing between elements
• Phase shift applied at each element

Mutual Impedance
The effect of mutual coupling is observed or modeled by varying the space between the
antenna elements in the array. Any change in the inter-element spacings changes the
mutual impedance between the antenna elements. For example, the plot shows the
mutual impedance of a two-element dipole array as a function of inter-element spacing.
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The plot shows that as the spacing between elements increases, the mutual impedance,
and hence mutual coupling decreases.

Coupling Matrix
A coupling matrix is used to characterize the mutual coupling between the antenna
elements at the port level. This matrix is calculated using S-parameters or Z-parameters
and is used to decouple the array.

S-Parameter Matrix

To calculate the coupling matrix, you can use the S-parameter matrix. You calculate each
column of the S-parameter matrix by feeding the antenna in that column by 1V. Consider
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an element array arranged in a 2x2 grid. Visualize the grid and the element numbers
using the layout.

There are four ports in this array. The corresponding S-parameter matrix would be of size
4 x 4:

S =

s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44
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During this measurement, terminate rest of the antenna elements using reference
resistance of 50 ohms. The termination resistance is internally set to a default of 50 ohms
and can be omitted during the calculation. If the termination is different, specify the
resistance value when using this function. The diagonal terms in the matrix shown,
represent the self-interaction which is also commonly referred to as the reflection
coefficient. The off-diagonal terms capture the mutual coupling between the ports of the
antenna.

Use sparameters to calculate the S-parameter coupling matrix of an array in Antenna
Toolbox.

Array Factor and Pattern Multiplication
The basis of the array theory is the pattern multiplication theorem. This theorem states
that the combined pattern of N identical array elements is expressed as the element
pattern times the array factor.

The array factor is calculated using the formula:

AF V i e k x i k y i k z i

i

N

= + +

=

Â ( )
( sin cos ( ) sin ( ) cos ( ))
i

i i iq j j q

0

where:

• N is the number of elements in the array.
• V is the applied voltage (amplitude and phase) at each element in the array.
• k is the wave number.
• theta and phi are the elevation and azimuth angles.
• x, y, and z are the Cartesian coordinates of the feed locations for every antenna

element of the array.

Once the array factor is calculated using the above equation, you can calculate the beam
pattern of the array as the product of the array factor and the beam pattern of the
individual antenna element of the array.

Array pattern = AF* individual antenna element pattern

The analysis assumes that the array elements are uncoupled. This means that the current
in one element does not excite currents in the other elements or there is no mutual
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coupling between different elements of the array. This is the most serious limitation of the
pattern multiplication theorem, restricting its use to arrays with large element spacing.

For example:

Calculate the array pattern of the rectangular array of dipoles in the x-y plane with a
spacing of half-lambda

fc = 1e9;
lambda = physconst('lightspeed')/fc;
az = -180:0.1:180;
el = -90:0.1:90;

%% Element
d = design(dipole,1e9);
d.Tilt = 90;
d.TiltAxis = [0 1 0];
 
%% Array
r = rectangularArray;
r.Element       = d;
r.RowSpacing    = lambda/2;
r.ColumnSpacing = lambda/2;
figure; show(r) ;
figure; patternMultiply(r, fc, az, el);

 Mutual Coupling

2-7



2 Array Concepts

2-8



Increase the size of the rectangular array to 200k elements. Below is the time taken for
the computation and the calculated directivity.
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You see that the time taken to solve a 100k array is less than 100 seconds. The initial
bump in time for the small array is because you perform EM analysis to compute the
pattern of the individual dipole element in the array. Once this analysis is done the results
are cached and the successive calls do not perform any EM analysis. As a result the
increase in time is fairly linear. This is the biggest advantage of using pattern
multiplication. It lets you solve large arrays quickly and with limited memory
requirements.
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Isolated Element Pattern
Patterns of individual elements in small arrays vary significantly. Therefore you cannot
use pattern multiplication for complete array pattern because isolated element pattern
assumes that all elements have the same pattern.

You can calculate the complete array pattern of small arrays by plotting the pattern all
the elements separately in a small array. To obtain this pattern, each element is
individually excited and the rest of the array elements terminated using reference
impedance. The plot shows the radiation pattern of individual elements of 4--element
array.
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Embedded Element Pattern
The embedded element pattern is the pattern of a single element embedded in a finite
array, calculated by driving a specific (typically the central) element in the array. The rest
of the array elements are terminated using reference impedance. This method is useful
for large array because the effect of mutual coupling on the individual element is
captured. It is important to note that the edge effects can be ignored since the size of the
array is assumed to be very large. It is common to use the center antenna element for this
calculation. Due, to the size of the array the radiation patterns of the elements in the
array can be approximated with the embedded element pattern instead of the isolated
element pattern. Finally, pattern multiplication is used to calculate the complete array
pattern.
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The figure shows the embedded element pattern of a center element in a 11x11 array.
You can also calculate the embedded element pattern as a magnitude of electric field.

Isolated element pattern is not recommended for large arrays as this method does not
account for the coupling effects of elements around it.

Scan Blindness

In large arrays, it is possible that the array directivity reduces drastically at certain scan
angles. At these scan angles, referred to as the blind angles, the array does not radiate
the power supplied at its input terminals [3]. The scan blindness can occur while using
these common mechanisms:

• Surface wave excitation
• Grating lobe excitation

To detect scan blindness in large finite arrays, study the embedded element pattern. In
infinite array analysis, this pattern is known as the array element pattern.
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Beamforming
In this section...
“Side Lobe Control” on page 2-15
“Beam Scanning” on page 2-17

Beamforming is the process of generating a directional beam from an antenna array.
Achieve beamforming by weighting individual elements by using side lobe control or
beam scanning.

Side Lobe Control
Side lobes are undesired and lead to reception or transmission of energy in unwanted
directions. Side lobe control in an array is achieved using amplitude taper or amplitude
weighting. Amplitude tapering changes the excitation amplitude of each element in the
array. Minor lobe levels are controlled using amplitude taper that runs from the center of
the array to the end of the array. Smoother amplitude tapering gives larger small side
lobe levels but half-power beamwidth. These arrays are non-uniformly excited arrays.

Consider a linear array of 21 elements. Without amplitude tapering, the array contains
unwanted side lobes in the desired direction:
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By using amplitude tapering on the linear array, you control the side lobes and achieve a
better main beam in the desired direction:
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Beam Scanning
Beam scanning is the movement of a radiation pattern in space. You can achieve beam
scanning by controlling the progressive phase difference between the elements to direct
the beam in any desired direction. The phase shift changes the phase of the excitation
currents of each element in an array. You can achieve this phase shift using phase sifter
devices, a time delay, frequency scanning, beam switching, or digital beamforming.

Consider a linear array of 21 elements where peak directivity is shown without beam
scanning:
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To scan the beam at a specific angle, use phase shift on the linear array:
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Grating Lobes
Grating lobes are the maxima of the main beam, as predicted by the pattern
multiplication theorem. When the array spacing is less than or equal to λ/2, only the main
lobe exists in the visible space, with no other grating lobes. Grating lobes appear when
the array spacing is greater than λ/2. For large spacing, grating lobes can appear in the
visible space even at a zero scan angle.

Consider a linear array of seven elements spaced one-half wavelength apart. This array
contains no grating lobes.

When you increase the element spacing to one wavelength, the number of side lobes
increases.
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When you increase the element spacing to 1.5 wavelengths apart, the grating lobes
appear in the visible region.

 Grating Lobes
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The grating lobes move in or out of the visible region depending on the spacing between
the elements and the relative phase between them.

References
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Correlation Coefficient

In this section...
“Far-Field Radiation Pattern” on page 2-23
“S-Parameter Characterization” on page 2-23

The correlation coefficient is the relationship between the incoming signals at the
antenna ports in an array. Mutual coupling in array systems degrades the performance of
the array. The correlation coefficient between antennas is used as a performance metric
in multiple-input multiple-output (MIMO) systems to quantify the system performance and
efficiency of the antennas. By using the correlation coefficient, a MIMO system designer
is able to understand the level of coupling that exists between the antenna ports in the
system. To minimize the mutual coupling would imply to reduce the correlation coefficient
between the pairs of ports. Antenna designers use two approaches to the calculate
correlation coefficient: the far-field Radiation pattern and S-parameters.

Far-Field Radiation Pattern
The correlation coefficient of a two antenna array system is:

ρe =
∫

4π
∫[F1(θ, ϕ) • F2(θ, ϕ)]dΩ

2

∫
4π
∫ F1(θ, ϕ)

2
dΩ ∫

4π
∫ F2(θ, ϕ)

2
dΩ

where Fi(θ, ϕ) is the radiation pattern of the antenna system when port i is excited.
Computing the correlation coefficient using this formula, requires the radiation pattern of
the antenna. This approach is hard and time consuming.

S-Parameter Characterization
Antenna Toolbox™ uses the S-parameter characterization to calculate correlation
between antenna elements in an array. This approach is simpler than the far-field
approach because the S-parameter calculation does not use the radiation patterns of the
antennas. Correlation coefficient is calculated using S-parameter by using:
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ρe =
S11* S12 + S21* S22

2

(1− ( S11
2 + S21

2))(1− ( S22
2 + S12

2))

The advantages of this method are quick analysis and broadband correlation results.
However, this approach assumes that the antennas are lossless and that incoming waves
are uniformly distributed. To calculate and plot the correlation between antennas in an
array, use the correlation function in Antenna Toolbox™.

References
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Infinite Arrays
In this section...
“What Are Infinite Arrays?” on page 2-25
“Infinite Array Analysis” on page 2-25
“Create Infinite Array Using Antenna Toolbox” on page 2-26
“Choose a Unit Cell” on page 2-27
“Scan Infinite Arrays” on page 2-30
“Scan Impedance and Scan Element Pattern” on page 2-30
“Compare Scan Element Pattern of Finite and Infinite Arrays” on page 2-31
“Impact of Infinite Double Summation” on page 2-37

What Are Infinite Arrays?
Infinite arrays are rectangular arrays of infinite extent. In an infinite array, a single
element called a unit cell, is repeated uniformly an infinite number of times along a plane.

Infinite Array Analysis
All arrays used in real-world scenarios are finite. But antenna arrays used in radio
astronomy, air defense, or surveillance radar can have more than 1000 antenna elements.
In such large arrays, the electromagnetic analysis of each element is tedious and time
consuming.

Infinite array analysis ignores the effect of truncation (edge effect) at array edges. The
method analyzes the behavior of the active antenna element as a function of frequency
and scan. The goal of infinite array analysis is to extract the behavior of the active
antenna element embedded in the array.

Assumptions

For infinite array analysis, array size must be greater than 10x10. The technique makes
other assumptions:

• Each element is identical.
• Each element is uniformly excited in amplitude.
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• All elements are spaced uniformly in two dimensions.

Infinite Array Solver

To model an infinite array, the method of moments (MoM) formulation is changed to
account for the infinite behavior by replacing Green's functions with periodic Green's
functions. The periodic Green's function is an infinite double summation.

Green's Function Periodic Green’s Function

g = e− jkR

R

R = r − r ′

gperiodic = ∑
m = −∞

∞
∑

n = −∞

∞
e jϕmne− jkRmn

Rmn

Rmn = x− x′− xm
2 + y − y′− yn

2 + z − z′ 2

ϕmn = k xmsinθcosφ + ynsinθcosφ
xm = m ⋅ dx, yn = n ⋅ dy

dx and dy are the ground plane dimensions that define the x and y dimensions of the unit
cell. θ and Φ are the scan angles.

The periodic Green's function has an additional exponential term added to the infinite
sum. The Φmn term accounts for the scanning of the infinite array. The periodic Green's
function also accounts for the effect of mutual coupling.

Create Infinite Array Using Antenna Toolbox
To create an infinite array, use the infiniteArray object to repeat a single antenna
element (unit cell), infinitely along the X-Y plane. The layout function displays a typical
unit cell.

infarray = infiniteArray;
layout(infarray)
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Choose a Unit Cell
You can use any antenna from the Antenna Toolbox as the unit cell. The unit cell requires
a ground plane to specify the boundaries. You can use a reflector to back antennas that do
not have a ground plane.

The default reflector properties are:

r = reflector

 reflector with properties:

              Exciter: [1x1 dipole]
    GroundPlaneLength: 0.2000

 Infinite Arrays

2-27



     GroundPlaneWidth: 0.2000
              Spacing: 0.0750
                 Tilt: 0
             TiltAxis: [1 0 0]

The default unit cell in an infinite array is a reflector that has a dipole as an exciter. The
Spacing property gives the distance between the reflector and the exciter. The default
infinite array properties are:

infarray = infiniteArray           

 infiniteArray with properties:

          Element: [1x1 reflector]
      ScanAzimuth: 0
    ScanElevation: 90

show (infarray)
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The dotted blue box bounds the unit cell. Ground plane length and ground plane width of
the unit cell are the dimensions of the antenna element of the infinite array.

An antenna with a ground plane, such as a microstrip patch antenna, is specified directly
as an Element of an infinite array.

infarray = infiniteArray('Element', patchMicrostrip)

infarray = 
  infiniteArray with properties:

          Element: [1x1 patchMicrostrip]
      ScanAzimuth: 0
    ScanElevation: 90

show(infarray)
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The Antenna Toolbox infinite array is located in the X-Y plane. Unit cells consisting of
antennas with ground planes are also located in the X-Y plane. For antennas used as unit
cells, such as the one in this example, you ignore the value of the Tilt property.

Scan Infinite Arrays
You scan a finite array by specifying the appropriate phase shift for each antenna
element. In Antenna Toolbox, you specify the scan angle (in azimuth and elevation) and
frequency for infinite array analysis. By default, an array always scans at boresight
(azimuth = 0 degrees and elevation = 90 degrees).

infarray = infiniteArray           

 infiniteArray with properties:

          Element: [1x1 reflector]
      ScanAzimuth: 0
    ScanElevation: 90

To change the scan angles, change the values of ScanAzimuth and ScanElevation.

Scan Impedance and Scan Element Pattern
To calculate the scan impedance for an infinite array, use the impedance function as a
function of scan angle. Fixing the scan angle pair and sweeping the frequency variable
reveals the frequency dependency in the scan impedance. Because ScanAzimuth and
ScanElevation are scalar values, you must a for-loop to calculate the complete scan
impedance of the array. For more information on calculating the scan impedance and the
scan element pattern see, “Infinite Array Analysis”.

Scan Element Pattern

To calculate the scan element pattern using scan impedance, use these expressions:

gs(θ) =
4RgRisogiso(θ)

Zs(θ) + Zg
2

• Rg — Resistance of generator
• Zg — Impedance of generator
• Zs — Scan impedance
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• giso(θ) — Pattern of isolated element
• Riso— Resistance of isolated element

The scan element pattern can also be expressed in terms of the reflection coefficient,
Γ(θ):

gs(θ) =
4Risogiso(θ)

Rs(θ) 1− Γ(θ) 2

The Antenna Toolbox software calculates the scan element pattern of a finite array by
driving just a single element. You terminate all the other elements using a suitable
impedance. The resulting element pattern includes mutual coupling and is valid for all
scan angles.

Compare Scan Element Pattern of Finite and Infinite Arrays
Case 1: Compare finite array and infinite array with unit cell of dimensions
0.5λ × 0.5λ

To calculate the scan element pattern of the finite arrays, first, create a reflector-backed
dipole. Set the dipole dimensions to Length(L) = 0.495λ and Width(W) = λ/160 and the
ground plane dimensions to 0.5λ × 0.5λ. Place the dipole at a distance of h = λ/4 from the
reflector. The ground plane dimensions set the boundaries of the unit cell. Create finite
arrays of sizes 11x11, 15x15, and 17x17 using this unit cell.

For finite arrays, calculate the scan element pattern by driving a single element in the
array. Terminate all other finite array elements using the broadside resistance of the
infinite array. For an infinite array with the unit cell of dimensions 0.5λ × 0.5λ, the
broadside resistance is 176 Ω. Calculate the scan element pattern for E-, D-, and H-planes
of all three finite arrays.

To calculate the scan element pattern of an infinite array, create an infinite array using
the same unit cell and the infiniteArray class. Calculate the scan impedance for three
scan planes: E, D, and H. Compute the pattern of the isolated element (dipole backed by
reflector). Finally, use the equations from the previous section to generate the scan
element pattern for the infinite array.

Perform all analysis at 10 GHz. To compare the patterns of finite and infinite array,
overlay them on the same plot.
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Case 2: Compare finite array and infinite array with unit cell of dimensions
0.7λ × 0.7λ

To compare the scan element pattern of these array types and infinite arrays, repeat the
process in case 1. Using these unit cell dimensions creates grating lobes. Terminate the
finite arrays using 86-Ω resistance. For an infinite array with unit cell of dimensions
0.7λ × 0.7λ, the broadside resistance is 86 Ω.
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For finite arrays of size greater than 10 x 10, the scan element patterns in the E-, D-, and
H-planes match the patterns of the infinite array scan element.

Impact of Infinite Double Summation
As show in the Green’s equations, the periodic Green's function has an infinite double
summation in (m, n). When performing infinite array analysis, the number of terms in the
double summation affects the accuracy of the final solution. Higher number of terms
results in better accuracy but increases computation time.

By default, Antenna Toolbox uses 10 terms for each summation term (m, n) to perform
infinite array analysis. The total summation term length is 2*10+1 (-10 to +10). To modify
the number of terms, use the method numSummationTerms.
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Higher number of terms are required if:

• You observe negative values for scan resistance for certain scan angles at certain
frequencies.

• You must investigate for convergence when scan impedance shows slow variations.
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Manipulate Array Elements
This example shows you how to control each individual element in a linear or rectangular
array. You can use this technique to change the size and tilt of the antenna, or to model
dead elements etc. with individual elements in an array.

Define Dipole Array

Create a dipole antenna using the dipole class. To create a 5x5 dipole array, replicate
the dipole antenna using a 5x5 matrix. Create a rectangular array using the dipole array
as a single element.

d = dipole;
N = 5;
df = repmat(d,N)

df = 
  5x5 dipole array with properties:

        Length: {25x1 cell}
         Width: {25x1 cell}
    FeedOffset: {25x1 cell}
          Tilt: {25x1 cell}
      TiltAxis: {25x1 cell}
          Load: {25x1 cell}

r = rectangularArray('Element',df);
show(r)
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Tilt Alternate Elements

Create a vector of alternate elements in the rectangular array.

S = [1:2:N*N];

Tilt the alternate elements in the array by 90 degrees about the y-axis.

for i = 1:25
    if any(S==i)
      r.Element(i).Tilt = 90;
      r.Element(i).TiltAxis = [0 1 0];
    end
end
show(r)
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Pattern of Rectangular Array

Plot the pattern of the array at 75 MHz.

pattern(r,75e6)
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Model Dead Elements

Antennas with a zero excitation voltage feed are called dead elements. By default, each
element in an array is excited by an amplitude of 1 V.

Vfeed = ones(1,N*N)

Vfeed = 1×25

     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1

2 Array Concepts

2-44



To model dead elements, set the voltage to zero for all horizontal elements. To control
voltage, use the AmplitudeTaper property. This property is the excitation amplitude of
the antennas in an array.

Vfeed(S) = 0

Vfeed = 1×25

     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0     1     0

r.AmplitudeTaper = Vfeed

r = 
  rectangularArray with properties:

           Element: [5x5 dipole]
              Size: [5 5]
        RowSpacing: 2
     ColumnSpacing: 2
           Lattice: 'Rectangular'
    AmplitudeTaper: [0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]
        PhaseShift: 0
              Tilt: 0
          TiltAxis: [1 0 0]

Plot the radiation pattern of the array.

figure
pattern(r,75e6)
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Computational Techniques

• “Method of Moments Solver for Metal Structures” on page 3-2
• “Method of Moments Solver for Metal and Dielectric Structures” on page 3-11
• “Hybrid MoM-PO Method for Metal Antennas with Large Scatterers” on page 3-19
• “Physical Optics Solver” on page 3-26
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Method of Moments Solver for Metal Structures
In this section...
“MoM Formulation” on page 3-2
“Neighbor Region” on page 3-6
“Singularity Extraction” on page 3-7
“Finite Arrays” on page 3-8
“Infinite Array” on page 3-9

Method of Moments computation technique for metal antennas.

The first step in the computational solution of electromagnetic problems is to discretize
Maxwell's equations. The process results in this matrix-vector system:

V = ZI

• V — Applied voltage vector. This signal can be voltage or power applied to the antenna
or an incident signal falling on the antenna.

• I — Current vector that represents current on the antenna surface.
• Z — Interaction matrix or impedance matrix that relates V to I.

Antenna Toolbox uses method of moments (MoM) to calculate the interaction matrix and
solve system equations.

MoM Formulation
The MoM formulation is split into three parts.

Discretization of Metals

Discretization enables the formulation from the continuous domain to the discrete
domain. This step is called meshing in antenna literature. In the MoM formulation, the
metal surface of the antenna is meshed into triangles.

3 Computational Techniques

3-2



Basis Functions

To calculate the surface currents on the antenna structure, you first define basis
functions. Antenna Toolbox uses Rao-Wilton-Glisson (RWG) [2] basis functions. The arrows
show the direction of current flow.
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The basis function includes a pair of adjacent (not necessarily coplanar) triangles and
resembles a small spatial dipole with linear current distribution. Each triangle is
associated with a positive or negative charge.

For any two triangle patches, tn+ and tn−, having areas An
+ and An

−, and sharing common
edge ln, the basis function is

f n(r ) =

ln
2An

+ ρ n
+S, r ∈ tn+

ln
2An

−ρ n
−S, r ∈ tn−

• ρ n
+ = r − r n

+ — Vector drawn from the free vertex of triangle tn+ to observation point r
• ρ n

− = r n
+− r  — Vector drawn from the observation point to the free vertex of the

triangle tn−

and

∇ ⋅ f n r =

ln
An

+ , r ∈ tn+

−
ln
An
− , r ∈ tn−

The basis function is zero outside the two adjacent triangles tn+ and tn−. The RWG vector
basis function is linear and has no flux (no normal component) through its boundary.

Interaction Matrix

The interaction matrix is a complex dense symmetric matrix. It is a square N-by-N matrix,
where N is the number of basis functions, that is, the number of interior edges in the
structure. A typical interaction matrix for a structure with 256 basis functions is shown:

3 Computational Techniques

3-4



To fill out the interaction matrix, calculate the free-space Green's function between all
basis functions on the antenna surface. The final interaction matrix equations are:

Zmn = jωμ
4π ∫

S
∫
S

f m r . f m r′ gdr′dr − j
4πωε ∫

S
∫
S

∇ . f m ∇ . f m gdr′dr

where

•
g(r , r′) =

exp(− jk r − r′ )

r − r′
 — Free-space Green's function
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To calculate the interaction matrix, excite the antenna by a voltage of 1 V at the feeding
edge. So the voltage vector has zero values everywhere except at the feeding edge. Solve
the system of equations to calculate the unknown currents. Once you determine the
unknown currents, you can calculate the field and surface properties of the antenna.

Neighbor Region
From the interaction matrix plot, you observe that the matrix is diagonally dominant. As
you move further away from the diagonal, the magnitude of the terms decreases. This
behavior is same as the Green's function behavior. The Green's function decreases as the
distance between r and r' increases. Therefore, it is important to calculate the region on
the diagonal and close to the diagonal accurately.

This region on and around the diagonal is called neighbor region. The neighbor region is
defined within a sphere of radius R, where R is in terms of triangle size. The size of a
triangle is the maximum distance from the center of the triangle to any of its vertices. By
default, R is twice the size of the triangle. For better accuracy, a higher-order integration
scheme is used to calculate the integrals.
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Singularity Extraction
Along the diagonal, r and r' are equal and defines Green's function becomes singular. To
remove the singularity, extraction is performed on these terms.
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∫
tp
∫

tq
ρ i . ρ ′ j g(r , r′)ds′ds = ∫

tp
∫

tq

ρ i . ρ ′ j
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1 ρ i . ρ ′ j

r − r′
ds′ds

∫
tp
∫

tq
g(r , r′)ds′ds = ∫

tp
∫

tq

1
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1

r − r′
ds′ds

The two integrals on the right-hand side of the equations, called potential or static
integrals are found using analytical results [3].

Finite Arrays
The MoM formulation for finite arrays is the same as for a single antenna element. The
main difference is the number of excitations (feeds). For finite arrays, the voltage vector
is now a voltage matrix. The number of columns are equal to the number of elements in
the array.

For example, the voltage vector matrix for a 2x2 array of rectangular patch antenna has
four columns as each antenna can be excited separately.
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Infinite Array
To model an infinite array, you change the MoM to account for the infinite behavior. To do
so you replace the free-space Green's functions with periodic Green's functions. The
periodic Green's function is an infinite double summation.

Green's Function Periodic Green's Function

g = e− jkR

R

R = r − r ′

gperiodic = ∑
m = −∞

∞
∑

n = −∞

∞
e jϕmne− jkRmn

Rmn

Rmn = x− x′− xm
2 + y − y′− yn

2 + z − z′ 2

ϕmn = k xmsinθcosφ + ynsinθcosφ
xm = m ⋅ dx, yn = n ⋅ dy

dx and dy are the ground plane dimensions that define the x and y dimensions of the unit
cell. θ and Φ are the scan angles.

Comparing the two Green's functions, you observe an additional exponential term that is
added to the infinite sum. The Φmn accounts for the scanning of the infinite array. The
periodic Green's function also accounts for the effect of mutual coupling.

For more information see, “Infinite Arrays” on page 2-25.
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See Also

More About
• “Infinite Arrays” on page 2-25
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Method of Moments Solver for Metal and Dielectric
Structures

In this section...
“MoM Formulation” on page 3-11
“Neighbor Region” on page 3-14
“Singularity Extraction” on page 3-16
“Finite Arrays” on page 3-16
“Infinite Array” on page 3-17

Method of Moments computation technique for metal and dielectric antennas.

Antennas using dielectric substrate consists of a metal part and a dielectric part. The first
step in the computational solution of electromagnetic problems is to discretize Maxwell's
equations. The process results in this matrix-vector system:

V = ZI

• V — Applied voltage vector. This signal can be voltage or power applied to the antenna
or an incident signal falling on the antenna.

• I — Current vector that represents current on the antenna surface.
• Z — Interaction matrix or impedance matrix that relates V to I. For calculating the

interaction matrix, the effect of metal and dielectric parts in an antenna are taken
separately.

Antenna Toolbox uses method of moments (MoM) to calculate the interaction matrix and
solve system equations.

MoM Formulation
The MoM formulation is split into three parts.

Discretization of Dielectrics

Discretization enables the formulation from the continuous domain to the discrete
domain. This step is called meshing in antenna literature. In the MoM formulation, the
metal surface of the antenna is meshed into triangles and the dielectric volume is meshed
into tetrahedrons.

 Method of Moments Solver for Metal and Dielectric Structures

3-11



Basis Functions

Basis functions are used to represent unknown quantities. In the case of antennas using
dielectrics, the unknown quantities are the surface current on the metal structure and
flux density due to dielectric volume. Antenna Toolbox uses Rao-Wilton-Glisson (RWG) [2]
basis functions. For basis functions for a metal structure in an antenna refer, “Method of
Moments Solver for Metal Structures” on page 3-2.

For the dielectric volume of the antenna, Antenna Toolbox uses a zeroth order edge basis
function to model the flux density.
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The figure shows an edge-based basis function. The vector variation is perpendicular to
the base edge AB (or l ). The vector of the edge CD (or p) defines the basis function.
Within a tetrahedron, the basis function is a constant field given by

f = cp

• c – normalization coefficient.
• p – vector of the edge defining the basis function.

Interaction Matrix

The interaction matrix is a complex dense symmetric matrix. For a metal-dielectric
antenna, there are two sets of basis functions and four interactions. To fill out the
interaction matrix, calculate the free-space Green's function between all the basis
functions on the antenna surface. The final interaction matrix equations are:

• ZMM – metal to metal interaction. For a pure metal structure, you only calculate this
symmetric square matrix.

Zmn
MM = jωμ

4π ∫
S
∫
S

f
M

m r . f
M

n r′ gdr′dr − j
4πωε ∫

S
∫
S

∇ . f
M

m ∇ . f
M

n gdr′dr

• ZDD – dielectric to dielectric interaction. For pure dielectric structures, you only
calculate this symmetric square matrix.

Z mn
DD = ∑

p− 1

P
∑

p′− 1

P′ Kp
ε p
∫

VD
f mp(r ) ⋅ f np′(r )dr

−
ω2μ0
4π ∑

p− 1

P
∑

p′− 1

P′
KpKp′ ∫

VD
∫

VD′
g(r , r′)f mp(r ) ⋅ f np′(r′)dr dr′

− 1
4πε0

∑
q− 1

Q
∑

q′− 1

Q′
K qK q′ ∫

Ωq
∫

Ωq′
g(r , r′)f ⊥ mq(r )f ⊥ nq′(r′)dsds′ m, n = 1, ...., N

• ZMD and ZDM – These matrices calculate the interaction between metal and dielectric.
This matrix is not a symmetrical square matrix.
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Zmn
MD = −

ω2μ0
4π ∑

p− 1

2
∑

p′− 1

P′
Kp∫

t
∫

VD′
f n

M
(r ) ⋅ f mp′(r′)g(r , r′)dr′ds

− 1
4πε0

∑
p− 1

2
∑

q− 1

Q
K q ∫

tD
∫

Ωq′
(∇s ⋅ f n

M
(r ))f ⊥ mq(r′)g(r , r′)dΩ′ds

m = 1, ...., ND; n = 1, ..., NM

Zmn
DM = −

jωμ0
4π ∑

p− 1

2
∑

p′− 1

P′
Kp′ ∫

VD
∫

SD′
f np(r ) ⋅ f m

M
(r′)g(r , r′)ds′dr

+ 1
4πε0ω ∑p− 1

2
∑

q− 1

Q
K q ∫

Ωq
∫

SD′
f ⊥ nq(r ) ⋅ (∇s ⋅ f m

M
(r′))g(r , r′)ds′dΩ

m = 1, ...., ND; n = 1, ..., NM

where

• g(r , r′) = exp(− jkR)
R , R = r − r′  is the free space Green's function.

•
K =

ε ±− ε0

ε ±  is the complex dielectric constant within every tetrahedron.

• K q = K+− K− is the differential contrast on every face of the tetrahedron.

For a composite metal structure, you must calculate all four matrices.

Neighbor Region
The figure shows a typical interaction matrix for a metal structure ZMM with 256 basis
functions.
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From the interaction matrix plot, you observe that the matrix is diagonally dominant. The
dielectric interaction matrix is also diagonally dominant. As you move further away from
the diagonal, the magnitude of the terms decreases. This behavior is same as the Green's
function behavior. The Green's function decreases as the distance between r and r'
increases. Therefore, it is important to calculate the region on the diagonal and close to
the diagonal accurately.

This region on and around the diagonal is called neighbor region. For a metal-dielectric
antenna, the neighborhood region is based on the average size of the tetrahedron.

For neighboring region details for metal antennas refer, “Method of Moments Solver for
Metal Structures” on page 3-2.
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Singularity Extraction
Along the diagonal, r and r' are identical and the defined Green's function becomes
singular. To remove the singularity, extraction is performed on these terms. The equations
for the singularity extraction of the ZMM matrix are:

∫
tp
∫

tq
ρ i . ρ ′ j g(r , r′)ds′ds = ∫

tp
∫

tq

ρ i . ρ ′ j
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1 ρ i . ρ ′ j

r − r′
ds′ds

∫
tp
∫

tq
g(r , r′)ds′ds = ∫

tp
∫

tq

1
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1

r − r′
ds′ds

The two integrals on the right-hand side of the equations, called potential or static
integrals are found using analytical results [3].

The equations for the singularity extraction of the ZDD matrix are:

∫
VD
∫

VD′
g(r , r′)dr dr′ = ∫

VD
∫

Vq

1
r − r′

dr dr′ + ∫
VD
∫

Vq

exp − jk r − r′ − 1

r − r′
dr dr′

∫
Ωq
∫

Ωq′
g(r , r′)dΩdΩ′ = ∫

ΩD
∫

Ωq

1
r − r′

dΩdΩ′ + ∫
SD
∫

Sq

exp − jk r − r′ − 1

r − r′
dΩdΩ

Finite Arrays
The MoM formulation for finite arrays is the same as for a single antenna element. The
main difference is the number of excitations (feeds). For finite arrays, the voltage vector
is now a voltage matrix. The number of columns are equal to the number of elements in
the array.

3 Computational Techniques

3-16



For example, the voltage vector matrix for a 2x2 array of rectangular patch antenna (with
and without dielectric substrate) has four columns as each antenna can be excited
separately.

Infinite Array
To model an infinite array, you change the MoM to account for the infinite behavior. To do
so, you replace the free-space Green's functions with periodic Green's functions. The
periodic Green's function is an infinite double summation.

Green's Function Periodic Green's Function

g = e− jkR

R

R = r − r ′

gperiodic = ∑
m = −∞

∞
∑

n = −∞

∞
e jϕmne− jkRmn

Rmn

Rmn = x− x′− xm
2 + y − y′− yn

2 + z − z′ 2

ϕmn = k xmsinθcosφ + ynsinθcosφ
xm = m ⋅ dx, yn = n ⋅ dy

dx and dy are the ground plane dimensions that define the x and y dimensions of the unit
cell. θ and Φ are the scan angles.
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Comparing the two Green's functions, you observe an additional exponential term that is
added to the infinite sum. The Φmn accounts for the scanning of the infinite array. The
periodic Green's function also accounts for the effect of mutual coupling.

For more information see, “Infinite Arrays” on page 2-25.
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Hybrid MoM-PO Method for Metal Antennas with Large
Scatterers

In this section...
“Subdomain RWG Basis Functions and Extra Dimensions” on page 3-19
“MoM Region and PO Region” on page 3-21
“MoM Solution and PO Solution” on page 3-22
“Finding ZPO” on page 3-23
“Direct Solution Method” on page 3-24

Hybrid method of moments (MoM) physical optics (PO) computational technique in
Antenna Toolbox allows you to model antennas near large scatterers such as parabolic
reflectors. The antenna element is modeled using MoM while the effect of electrically
large structures is considered using PO.

Subdomain RWG Basis Functions and Extra Dimensions
The familiar Rao Wilton Glisson (RWG) basis functions on triangles are based on [2].
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In the image, for two arbitrary triangular patches trn
+ and trn

- having areas An
+ and An

-

and sharing a common edge ln the basis functions has the form
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where 
r r r

r
n n

r r
+ -

= -  is the vector drawn from the free vertex of the triangle trn
+ to the

observation point 
r

r ; 
r r r

r
n n

r r
- -

= -  is the vector drawn from the observation point to the
free vertex of the triangle trn

-. The basis function is zero outside the two adjacent
triangles. The RWG vector basis function is linear and has no flux (that is, has no normal
component) through its boundary.
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From [1], along with the standard definition, this method requires two unit normal

vectors 
r

n
n

±

 and two-unit vectors 
r

t
n

±

 also shown in the figure. Vector 
r

t
n

+

 is the plane of
triangle trn

+; both vectors are perpendicular to the edge ln. They are defined at the center

of edge ln, which are denoted by 
r

r
n . Directions of 

r

t
n

±

are also shown in the figure. This technique assumes that the normal vectors are properly

(angle between adjacent 
r

n
n

±

 must be less than 180 degrees) and uniquely defined.
Specific vector orientation (e.g. outer or inner normal vectors) does not matter. We then

form two cross product vectors 
r

l
n

±

,
r
r
r

l t n
n n n

± ± ±
= ¥                                                                                                            (2)

and establish that both such unit vectors directed along the edge are identical,
r r r

l l l
n n n

± -
= =                                                                                                                   (3)

Only vector 
r

l
n  is eventually needed.

MoM Region and PO Region

The surface current density, 
r

r

J r( ) , on the entire metal surface is expanded into N RWG
basis functions. However, a part of such basis functions belongs to the MoM region (or
"exact region") while another part will belong to the PO region (or "approximate region").
These basis functions (or regions) can overlap and be arbitrarily distributed in space (not
necessarily be contiguous). The method assumes that NMoM basis functions from the MoM
region up front in the list and NPO basis functions for the PO region afterward. Therefore,

you have ( )N N N
PO MoM

+ =

r

r

r

r

r

r

r

r

J r I f r J r I f rn

MoM

n

N

n n

PO

n

N

n N

MoM PO

MoM
( ) ( ), ( ) ( )= =

= =

+Â Â
1 1

                                                 (4)
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MoM Solution and PO Solution
If there is no PO region, you can solve the entire problem using the MoM with single

square MoM system matrix Z̆ , which may be subdivided into 4 matrices as shown.

˘
˘ ˘

˘ ˘
, dim( ˘ ) ,dim( ˘ )Z

Z Z

Z Z

Z N N Z
MoM MoM

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ = ¥ =11 12

21 22

11 12 NN N
MoM PO

¥                            (5)

The figure shows the matrix interpretation of the hybrid MoM-PO solution and its
comparison with plain MoM solution. The method assumes the antenna feeds gives the

vector, 
r

V  that describes the excitation, which belongs to the MoM region only.

The hybrid solution keeps submatrices Z̆
11  and Z̆

12 . In other words, the method solves
the standard system of the linear equations for the MoM region where radiation from the

PO region via Z̆
12  is considered.

The hybrid solution ignores the submatrices, Z̆
22  entirely. Here, the currents in the PO

region do not interact with each other. They are found via the radiated magnetic field,
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r

r

H r( ) , from the MoM region, using PO approximation [1]. A new matrix describes this

operation, Z̆
PO , and negative identity matrix, E, which replaces Z̆

22 .

Finding ZPO
The suitable PO approximation has the form [1]
r

r r r r

r

r

J r r n r H r( ) ( )[ ( ) ( )]= ¥2d                                                                                         ((6)

where δ accounts for the shadowing effects. If the observation point lies in the shadow
region, δ must be zero. Otherwise it equals ±1 depending on the direction of incidence

with respect to the orientation normal vector 
r r

n r( ) . Using second Eq.(4) yields:

I f r r n r H rn

PO

n N

n

N

MoM

PO r

r r r r

r

r

+

=

Â = ¥( ) ( )[ ( ) ( )]
1

2d                                                                       (77)

Reference [1] outlines an elegant way to express unknowns In
PO explicitly, using an

interesting variation of the collocation method. First, we consider a collocation point that

tends to the edge center 
r

r
n NMoM+  of a certain basis function 

r

r

f rn NMoM+
( )  and is in its plus

triangle. We then multiply Eq. (7) by vector 
r

t
n NMoM+

+

. Since the normal component of the
basis function under interest at the edge is one and all other basis functions sharing the
same triangle have no normal component at this edge, the result becomes

I r t n H r
n

PO

n N n N n N n N
MoM MoM MoM MoM

= ◊ ¥ÍÎ ˙̊
+ +

+
+

+
+2d ( ) ( )

r r r

r

r

                                       (8a)

Repeat the same operation with the minus triangle and obtain

I r t n H r
n

PO

n N n N n N n N
MoM MoM MoM MoM

= ◊ ¥ÍÎ ˙̊
+ +

-
+

-
+2d ( ) ( )

r r r

r

r

                                         (8b) 

Add both Eqs. (8a) and (8b) together, divide the result by two, and transform the triple
vector product to obtain
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I r H r t n t
n

PO

n N n N n N n N n
MoM MoM MoM MoM
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2d ( ) ( ) (
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r r r r
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+
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n
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Therefore, according to Eqs. (2) and (3),

I r H r l
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n N n N n NMoM MoM MoM
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+ + +

2d ( ) ( )
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                                                            ( )10

To complete the derivation, the H-field radiated by the MoM region is always written in
the form

r

r

r

r

H r C r I
n n

MoM

n

NMoM

( ) ( )=
=

Â
1

                                                                                            (11)

where 
r

C r
n
( ) are given by individual basis function contributions. In the simplest case,

every such contribution is the dipole radiation [3]. Substitution of Eq. (11) into Eq. (10)
yields

I Z I
n

PO

POmn

n

N

n

MoM
MoM

=
=

Â ˘
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                                                                                           (112)

˘ ( ) ( ) ,...., ,Z r C r l m N n
POmn n N n N m N POMoM MoM MoM

= ◊ =
+ + +

2 1d
r

r

r

r

== 1,...,N
MoM

Direct Solution Method
According to the second figure, the coupled system of equations has the form

˘ ˘Z I Z I V
MoM PO

11 12

r r r

+ =                                                                                               (113)
r r

I Z I
PO

PO

MoM
= ˘

The direct solution method results in the substitution of the expression for the PO current
into the first equation,

( ˘ ˘ ˘ )Z Z Z I V
PO

MoM

11 12
+ =

r r

                                                                                               (14)
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Physical Optics Solver
In this section...
“Subdomain RWG Basis Functions and Extra Dimensions” on page 3-26
“Finding IPO” on page 3-28
“Determination of Illuminated or Shadow Regions” on page 3-29

Physical optics (PO) solver in Antenna Toolbox allows you to solve for the RCS of an
object.. In physical optics, the incident filed is used to calculate the currents on the
surface of the structure in response to the impinging plane wave. With the currents
available, you can obtain the scattered field at desired points in the far-field.

Subdomain RWG Basis Functions and Extra Dimensions
The familiar Rao Wilton Glisson (RWG) basis functions on triangles are based on [2].

3 Computational Techniques

3-26



In the image, for two arbitrary triangular patches trn
+ and trn

- having areas An
+ and An

-

and sharing a common edge ln the basis functions has the form

r

r

r r

r r

f r

l

A
r tr

l

A
r tr

n

n

n

n n

n

n

n n

( ) =

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
Ô+

+ +

-
- -

2

2

r

r

 in 

 in 

ÔÔ

˛
Ô
Ô

                                                                                       (1)

where 
r r r

r
n n

r r
+ -

= -  is the vector drawn from the free vertex of the triangle trn
+ to the

observation point 
r

r ; 
r r r

r
n n

r r
- -

= -  is the vector drawn from the observation point to the
free vertex of the triangle trn

-. The basis function is zero outside the two adjacent
triangles. The RWG vector basis function is linear and has no flux (that is, has no normal
component) through its boundary.

From [1], along with the standard definition, this method requires two unit normal

vectors 
r

n
n

±

 and two-unit vectors 
r

t
n

±

 also shown in the figure. Vector 
r

t
n

+

 is the plane of
triangle trn

+; both vectors are perpendicular to the edge ln. They are defined at the center

of edge ln, which are denoted by 
r

r
n . Directions of 

r

t
n

±

are also shown in the figure. This technique assumes that the normal vectors are properly

(angle between adjacent 
r

n
n

±

 must be less than 180 degrees) and uniquely defined.
Specific vector orientation (e.g. outer or inner normal vectors) does not matter. We then

form two cross product vectors 
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±

,
r
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n n n
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and establish that both such unit vectors directed along the edge are identical,
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Only vector 
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n  is eventually needed.
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The surface current density, J (r ), on the entire metal surface is expanded into NPO RWG
basis functions. these basis functions (or regions) may overlap and be arbitrarily
distributed in space.

J (r ) = ∑
n = 1

NPO
InPOf n(r ) (4)

Finding IPO
The suitable PO approximation has the form:

J (r ) = 2δ(r )[n (r ) × H(r )] (5)

where δ accounts for the shadowing effects. If the observation point lies in the shadowed
region, δ must be zero. Otherwise it equals to ±1 depending on the direction of incidence
with respect to the orientation of the normal vector n (r ). Using Eq.(4) yields:

∑
n = 1

NPO
InPOf n(r ) = 2δ(r )[n (r ) × H(r )] (6)

Ref [3] outlines an elegant way to express unknowns InPO explicitly, using an interesting
variation of the collocation method. First , consider a collocation point that tends to the
edge center r n of a center basis function f n(r ) and is located in the plus triangle.

Multiply Eq.(6) by vector t n
+

. Since the normal component of the basis function at the
edge is one and all the other basis functions sharing the same triangle have no normal
component at the edge, the result becomes

InPO = 2δ(r n)t n
+
⋅ [n n

+ × H(r n)] (7a)

Repeat the same operation with minus triangle:

InPO = 2δ(r n)t n
−
⋅ [n n

−× H(r n)] (7b)

Add equations 7(a) and 7(b), divide the result by two, and transform the triple vector
product to obtain:
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InPO =
2δ(r n)H(r n) ⋅ ([t n

+
× n n

+] + [t n
−

× n n
−])

2 (8)

Therefore, according to equations (2) and (3),

InPO = 2δ(r n)H(r n) ⋅ l n (9)

Determination of Illuminated or Shadow Regions
The calculation of δ(r ) needs to account for the effect of shadowing. For simple convex
structures the use of the normal to test against the direction of the radiation would
indicate the illuminated or shadow region. If the normal of the triangle is pointing in the
opposite direction of the radiation, then the face is illuminated. If the normal of the
triangle is in the same direction, then the face is shadowed. But this simple test fails
when the object is nonconvex as is the case in more complex structures. To handle this,
perform a segment-triangle intersection test to rigorously determine the value of δ(r ).
The value of δ(r ) is 0 for shadow faces or ±1 depending on the direction of incidence with
respect to the orientation of normal vector . To implement this relative to the RWG basis
functions that are formed on the surface of the PO region, check for both arbitrary
triangular patches trn

+ and trn
− to be in the illuminated region and only then consider the

contribution made by the edge to the calculation of the PO current. If either triangle is in
the shadow region, the delta value is evaluated to zero and therefore the edge does not
contribute.
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RF Propagation

• “Site Viewer” on page 4-2
• “Troubleshooting Site Viewer” on page 4-11
• “Access Basemaps and Terrain in Site Viewer” on page 4-13
• “Access TIREM Software” on page 4-15
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Site Viewer
In this section...
“Introduction” on page 4-2
“Dimension Picker” on page 4-3
“Basemaps” on page 4-4
“View Latitude and Longitude Coordinates of Location” on page 4-8
“Limitations for Terrain and Buildings” on page 4-9

Introduction
Transmitter and receiver site for RF propagation visualization involves a map display
called Site Viewer. You can use the Home button to view the default home location of Site
Viewer.
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Site Viewer includes in-canvas pan, zoom, and rotation.

Site Viewer is a 3-D map display and requires hardware graphics support for WebGL™.

Opening Site Viewer using siteviewer allows customization of basemap, terrain, and
buildings.

Dimension Picker
The dimension picker offers three choices: 3-D, 2-D, and Columbus View.

 Site Viewer
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• 3-D View – Provides a smooth globe. This is the default view.
• 2-D View – Provides a flat map in Mercator projection.
• Columbus View – Provides a flat map in Mercator projection that allows tilt and

rotation.

Basemaps
Basemaps are the underlying maps used by Site Viewer.
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You can select the basemaps using the basemap picker. You need an active internet
connection for all basemaps except Dark Water. The following options are available:

• Satellites
• Streets
• OpenStreetMap
• Dark Water
• Gray Land
• Blue Green
• Gray Terrain
• Color Terrain
• Land Cover

 Site Viewer
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By default, Site Viewer uses Satellites. You need an active internet connection for all
basemaps except Dark Water.

Use Satellites for high-quality satellite imagery. Use Streets, or OpenStreetMap for
imagery of roads, labels, and political boundaries.

Use The MathWorks® natural earth basemaps for low resolution but more controls and
color scheme options in basemaps.
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Basemaps

Two-Tone
Basemaps

Description Natural Earth
Basemaps

Description

'darkwater'

Land areas: light-to-
moderate gray

Ocean and water
areas: darker gray

This is the default
map.

'colorterrain'

Shaded relief
combined with
custom elevation
colors based on
climate—humid
lowlands are green
and arid lowlands
brown.

'grayland'

Land areas: light-to-
moderate gray land

Ocean and water
areas: white

'grayterrain'

Worldwide terrain
depicted
monochromatically in
shades of gray,
combining shaded
relief that
emphasizes both
high mountains and
the micro terrain
found in lowlands.
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Two-Tone
Basemaps

Description Natural Earth
Basemaps

Description

'bluegreen'

Land areas: light
green

Ocean and water
areas: light blue

'landcover'

Satellite-derived land
cover data and
shaded relief
presented with a
light, natural palette
suitable for making
thematic and
reference maps
(includes ocean-
bottom relief).

View Latitude and Longitude Coordinates of Location
Use Site Viewer to view the latitude and longitude coordinates of any location. To view
the latitude and longitude, right-click the map and select Show Location.

To remove the location, right-click the location and select Remove Location.
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Limitations for Terrain and Buildings
Terrain

• Default terrain access requires internet connection. If no internet connection exists,
then Site Viewer automatically uses 'none' in the property Terrain.

• Custom DTED terrain files for use with addCustomTerrain must be acquired outside
of MATLAB® for example by using USGS EarthExplorer.

• When using custom terrain, analysis is restricted to the terrain region. For example,
an error occurs if trying to show a txsite or rxsite outside of the region.

 Site Viewer
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Buildings

• OpenStreetMap files obtained from https://www.openstreetmap.org represent crowd-
sourced map data, and the completeness and accuracy of the buildings data may vary
depending on the map location.

• When downloading data from https://www.openstreetmap.org, select an export area
larger than the desired area to ensure that all expected building features are fully
captured. Building features at the edge of the selected export area may be missing.

• Building geometry and features are interpreted from the file according to the
recommendations of OpenStreetMap for 3-D buildings.

See Also
opengl

More About
• “Troubleshooting Site Viewer” on page 4-11
• “Access Basemaps and Terrain in Site Viewer” on page 4-13
• “System Requirements for Graphics” (MATLAB)
• “Resolving Low-Level Graphics Issues” (MATLAB)
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Troubleshooting Site Viewer
In this section...
“Internet Connection Failure” on page 4-11
“Graphics Environment” on page 4-11

Internet Connection Failure
When you start Site Viewer up on showing a txsite or rxsite object, a check is made to
make sure that you have an internet connection to retrieve the default basemap and
terrain data.

If Site Viewer cannot connect to the Internet the following warning messages are
displayed:

• Warning: Unable to access the Internet, showing Dark Water instead of Satellites. See
Access Basemaps and Terrain in Site Viewer.

• Warning: Unable to access terrain data. See Access Basemaps and Terrain in Site
Viewer.

If Site Viewer cannot connect to the Internet, then terrain data is not used and the "Dark
Water" basemap is selected.

Graphics Environment
Site Viewer can fail to open because of two reasons:

• In MATLAB, OpenGL® is set to software graphics. An error message is displayed in the
command window, notifying you to upgrade the graphics hardware driver or select
hardware graphics using OpenGL.

For more information, see opengl, and “Resolving Low-Level Graphics Issues”
(MATLAB).

• When starting Site Viewer, JavaScript® for WebGL support fails. An error message is
displayed in the command window, notifying you to update the graphics hardware
driver.

For more information, see “Resolving Low-Level Graphics Issues” (MATLAB)

 Troubleshooting Site Viewer

4-11



See Also
opengl

More About
• “Site Viewer” on page 4-2
• “Access Basemaps and Terrain in Site Viewer” on page 4-13
• “System Requirements for Graphics” (MATLAB)
• “Resolving Low-Level Graphics Issues” (MATLAB)
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Access Basemaps and Terrain in Site Viewer

In this section...
“Access and Download Basemaps” on page 4-13
“Access Terrain” on page 4-14

You need an active internet connection for all basemaps except Dark Water.

Access and Download Basemaps
To download MATLAB basemaps:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-
Ons.

2 In the Add-On Explorer, scroll to the MathWorks Features section, and click show
all to find the basemap packages. You can also search for the basemap add-ons by
name (listed in the following table) or click Features in Filter by Type.

3 Select the basemap data packages. For more information about basemaps, see
geobubble.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

In addition, Site Viewer also supports three external basemaps that you can select from
the basemap picker. The following options are available:

• Satellites
• Streets
• OpenStreetMap
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Note If basemap does not render correctly in Site Viewer (for example only the ocean is
visible), check if the basemap server supports CORS (cross-origin resource sharing). Site
Viewer does not support basemaps that do not support CORS.

Access Terrain
To access terrain data for Site Viewer, you need an active internet connection.

See Also

More About
• “Site Viewer” on page 4-2
• “Troubleshooting Site Viewer” on page 4-11
• “System Requirements for Graphics” (MATLAB)
• “Resolving Low-Level Graphics Issues” (MATLAB)
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Access TIREM Software
The Terrain Integrated Rough Earth Model™ (TIREM™) is a propagation model for
computing the path loss for irregular terrain and seawater scenarios. TIREM is
developed, trademarked, and licensed by Alion Science. To use TIREM, you need to
acquire it from Alion Science.

TIREM is designed to calculate the reference basic median propagation loss (path loss)
based on the terrain profile along the great circle path between two antennas, for
example, using digital terrain elevation data (DTED). You can use TIREM model to
calculate the point-to-point path loss between sites over irregular terrain. The model
combines physics with empirical data to provide path loss estimates. The TIREM
propagation model can predict path loss at frequencies between 1 MHz and 1 THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder
contains the tirem3 shared library. The full library name is platform-dependent:

Platform Shared Library Name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib

See Also
tiremSetup
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